Advertisement: Simpsons Creative
Advertisement: Excalibur Healthcare mid banner
Advertisement: EBCam mid banner
Advertisement: Kao Data Centre mid banner
Barr Ellison Solicitors – commercial property
Advertisement: CJBS mid banner
Mid banner advertisement: BDO
Advertisement: HCR Hewitsons mid banner
Advertisement: S-Tech mid banner 3
Advertisement: Mogrify mid banner
Advertisement: Wild Knight Vodka
Advertisement: partnersand mid banner
Advertisement: Cambridge Network mid banner
Advertisement: RSM mid banner
Advertisement: TTP
ARM Innovation Hub
30 November, 2021 - 19:06 By Tony Quested

Cambridge scientists develop revolutionary biomedical material

Researchers at the University of Cambridge have developed a ‘super jelly’ that could be a game-changer in the fields of soft robotics, bioelectronics or even as a cartilage replacement for biomedical use.

The scientists say the material can withstand the equivalent of an elephant standing on it, and completely recover to its original shape, even though it is 80 per cent water. The material looks and feels like jelly, but acts like an ultra-hard, shatterproof glass when compressed, despite its high water content. The results are reported in the journal Nature Materials.

Researchers from the Scherman laboratory are currently working to further develop these glass-like materials towards biomedical and bioelectronic applications in collaboration with experts from engineering and materials science. 

The research was funded in part by the Leverhulme Trust and a Marie Skłodowska-Curie Fellowship. Oren Scherman is a Fellow of Jesus College.

“In order to make materials with the mechanical properties we want, we use crosslinkers, where two molecules are joined through a chemical bond,” said Dr Zehuan Huang from the Yusuf Hamied Department of Chemistry, the study’s first author. 

“We use reversible crosslinkers to make soft and stretchy hydrogels, but making a hard and compressible hydrogel is difficult and designing a material with these properties is completely counterintuitive.”

Working in the lab of Professor Oren A. Scherman, who led the research, the team used barrel-shaped molecules called cucurbiturils to make a hydrogel that can withstand compression. 

The cucurbituril is the crosslinking molecule that holds two guest molecules in its cavity – like a molecular handcuff. The researchers designed guest molecules that prefer to stay inside the cavity for longer than normal, which keeps the polymer network tightly linked, allowing for it to withstand compression.

“At 80 per cent water content, you’d think it would burst apart like a water balloon, but it doesn’t: it stays intact and withstands huge compressive forces,” said Scherman, Director of the University’s Melville Laboratory for Polymer Synthesis. “The properties of the hydrogel are seemingly at odds with each other.”

“The way the hydrogel can withstand compression was surprising, it wasn’t like anything we’ve seen in hydrogels,” said co-author Dr Jade McCune, also from the Department of Chemistry. “We also found that the compressive strength could be easily controlled through simply changing the chemical structure of the guest molecule inside the handcuff.”

“People have spent years making rubber-like hydrogels, but that’s just half of the picture,” said Scherman. “We’ve revisited traditional polymer physics and created a new class of materials that span the whole range of material properties from rubber-like to glass-like, completing the full picture.”

The researchers used the material to make a hydrogel pressure sensor for real-time monitoring of human motions, including standing, walking and jumping.

“To the best of our knowledge, this is the first time that glass-like hydrogels have been made. We’re not just writing something new into the textbooks, which is really exciting, but we’re opening a new chapter in the area of high-performance soft materials,” said Huang.

• Image credit –  Zehuan Huang

Newsletter Subscription

Stay informed of the latest news and features