ARM Innovation Hub
RealVNC mid banner careers
RealVNC mid-banner general
Advertisement: Wild Knight Vodka
Advertisement: TTP
Advertisement: Cambridge Network
Advertisement: EBCam mid banner
Advertisement: Kao Data Centre mid banner
Mid banner advertisement: BDO
Advertisement: Simpsons Creative
Advertisement: RSM
Advertisement: EY Mid banner
Barr Ellison Solicitors – commercial property
Advertisement: Mogrify mid banner
14 October, 2020 - 22:10 By Tony Quested

New Cambridge phenomenon: Low cost devices that can recharge out of thin air

Researchers from the University of Cambridge, working with collaborators from China and Saudi Arabia, have developed an approach for printed electronics that could be used to make low-cost devices that recharge out of thin air. 

Even the ambient radio signals that surround us would be enough to power them. 

The work paves the way for a new generation of self-powered electronics for biomedical applications, smart homes, infrastructure monitoring, and the exponentially-growing Internet of Things device ecosystem.

Electronics that consume tiny amounts of power are key for the development of the IoT, in which everyday objects are connected to the internet. 

Many emerging technologies, from wearables to healthcare devices to smart homes and smart cities, need cost-effective transistors and electronic circuits that can function with minimal energy use.

Printed electronics are a simple and inexpensive way to manufacture electronics that could pave the way for low-cost electronic devices on unconventional substrates – such as clothes, plastic wrap or paper – and provide everyday objects with ‘intelligence’.

However, these devices need to operate with low energy and power consumption to be useful for real-world applications. Although printing techniques have advanced considerably, power consumption has remained a challenge – the different solutions available were too complex for commercial production.

Since the commercial batteries which power many devices have limited lifetimes and negative environmental impacts, researchers are developing electronics that can operate autonomously with ultra-low levels of energy.

The technology developed by the Cambridge-led researchers delivers high-performance electronic circuits based on thin-film transistors which are ‘ambipolar’ as they use only one semiconducting material to transport both negative and positive electric charges in their channels, in a region of operation called ‘deep subthreshold.’ 

The phrase essentially means that the transistors are operated in a region that is conventionally regarded as ‘off’ state. 

The researchers coined the phrase ‘deep-subthreshold ambipolar’ to refer to unprecedented ultra-low operating voltages and power consumption levels.

If electronic circuits made of these devices were to be powered by a standard AA battery, the researchers say it would be possible that they could run for millions of years uninterrupted.

The team, which included researchers from Soochow University, the Chinese Academy of Sciences, ShanghaiTech University, and King Abdullah University of Science and Technology (KAUST), used printed carbon nanotubes – ultra-thin cylinders of carbon – as an ambipolar semiconductor to achieve the result.

Co-lead author Luigi Occhipinti from Cambridge’s Department of Engineering, said: “Thanks to deep-subthreshold ambipolar approach, we created printed electronics that meet the power and voltage requirements of real-world applications and opened up opportunities for remote sensing and ‘place-and-forget’ devices that can operate without batteries for their entire lifetime.

“Crucially, our ultra-low-power printed electronics are simple and cost-effective to manufacture and overcome long-standing hurdles in the field.”

The research was funded in part by the Engineering and Physical Sciences Research Council.

• PHOTOGRAPH: Artist's impression of a hybrid-nanodielectric-based printed-CNT transistor. Credit: Luis Portilla

Newsletter Subscription

Stay informed of the latest news and features