Cambridge Cluster Map
Advertisement: BKL
RealVNC mid banner careers
ARM Innovation Hub
RealVNC mid-banner general
2 April, 2013 - 08:39 By Tony Quested

Cambridge holograms pave way for biosensors

Dr Haider Butt

New Cambridge University technology could open the path to creating holographic biosensors.

Dr Haider Butt and fellow researchers from the Department of Engineering have demonstrated the novel utilisation of carbon nanotubes for making high resolution holograms.

Dr Butt told Business Weekly: “This invention paves the way towards producing high resolution and wide field of view 3D holograms. That will be possible if each of the nanoscale pixels become tunable. This is the challenge we are addressing.

“Other than that we are looking at using these holograms for producing holographic bio-sensors. We are making these holograms with nano-materials which change their properties in response to a PH change, presence of a gas etc. Therefore, in response to a change in these biological stimuli the projected image would change to enhance detection capability.”

Carbon nanotubes – a manmade material – have been the focus of an enormous amount of research during the last decade due to their extraordinary electrical and optical properties. These tubes are many times thinner than a wavelength of visible light, which makes them promising candidates for being used as pixels.

“The size of pixels is one of the key limiting features in state-of-the-art holographic display systems,” said Dr Butt, who conducted the work along with Yunuen Montelongo, both from the Centre of Molecular Materials for Photonics and Electronics (CMMPE) group at the Department of Engineering.

The researchers have produced holograms using the smallest pixels yet - carbon nanotubes. Due to the nanoscale dimensions of the carbon nanotube array, the image presented a wide field of view and high resolution.

The researchers first calculated the exact placement pattern for carbon nanotubes within the hologram that would produce a ‘CAMBRIDGE’ image when illuminated by light. Based on calculations, the nanofabrication of a hologram consisting of vertically aligned carbon nanotubes was performed on silicon substrate.

The nanofabrication process was mostly performed by Tim Butler from the Department of Engineering's Electronics, Power and Energy Conversion (EPEC) Research Group.

When the fabricated hologram was illuminated by laser, very high contrast and wide field of view images of the word ‘Cambridge’ were observed. This work is a breakthrough in the field of holographic technology as it reports the original use of nanostructures for producing holograms.

The collaborative team of researchers from CMMPE and EPEC research groups are working in this field of research to produce nanostructures based holographic sensors, projection systems and wavelength dependent holograms. The team will also be exploring alternative and less expensive nanomaterials for producing such holograms. The research is supervised by Dr Timothy D. Wilkinson (CMMPE) and Professor Gehan A. J. Amaratunga (Head of EPEC).


Add new comment

Kiss Communications

Newsletter Subscription

Stay informed of the latest news and features