ARM Innovation Hub
Advertisement: Bradfield Centre mid
RealVNC mid-banner general
Advertisement: Lynch Wood Park
Advertisement: RSM
Advertisement: Bridge Fibre mid
RealVNC mid banner careers
Barr Ellison Solicitors – commercial property
Advertisement: Cambridge Network
Advertisement EY mid
Advertisement: Mobas mid banner
Advertisement Cambridge China Centre
2 July, 2018 - 13:59 By Tony Quested

DNA trailblazer Evonetix secures £1.3m for gene synthesis project

Cambridge startup Evonetix, which is spearheading new technology to enable scalable and high-fidelity gene synthesis, has won £1.3 million from Innovate UK.

The funding will support the development of a novel enzymatic approach to DNA synthesis by Evonetix and collaborator Durham University.

Evonetix is revolutionising gene synthesis with the aim of producing DNA at scale to facilitate many applications in the rapidly growing field of synthetic biology. This will encompass a range of enhancements from development of novel pharmaceuticals to industrial biotech, renewable fuels and agriculture.

Evonetix’s novel silicon array, combined with its unique synergistic thermal control chemistry and process of error detection throughout assembly, permits massive parallelism in de novo DNA synthesis.

This enables high-throughput on-chip assembly of high-fidelity gene-length DNA at scale. As part of the Innovate UK co-funded project, Evonetix will develop a novel enzymatic approach to gene synthesis and integrate it into its proprietary, thermally addressable silicon array.

The research will be directed by Dr Raquel Sanches-Kuiper, director of biology at Evonetix, whose group will develop engineered enzymes that are able to efficiently incorporate modified nucleotides.

The group of Dr David Hodgson, associate professor of chemistry at Durham University, will develop the modified nucleotides for enzymatic synthesis in Evonetix’s silicon array.

Dr Tim Brears, CEO at Evonetix, said: “The funding from Innovate UK will enable us to expand our approach to include enzymatic gene synthesis and will be vital in bringing this project to a successful outcome. The extension of our platform’s capabilities will be of great value as we seek to address the needs of the rapidly growing synthetic biology market, which is estimated to reach $40 billion by the mid-2020s.”

Dr Sanches-Kuiper added: “We believe the use of enzymatic oligonucleotide synthesis, which operates under milder aqueous conditions compared to phosphoramidite chemistry, will provide a significant commercial advantage and offer a highly valuable tool for de novo gene synthesis with our platform. It will achieve this by being more environmentally friendly and by further streamlining the industrialisation of high-fidelity DNA synthesis.

“The team at Durham’s Department of Chemistry has many years of experience in nucleotide chemistry and will complement our expertise in protein engineering, DNA synthesis and assembly.”


Newsletter Subscription

Stay informed of the latest news and features