Advertisement: EBCam mid banner
Advertisement: TTP
Advertisement: CJBS mid banner
Advertisement: HCR mid banner
ARM Innovation Hub
Advertisement: Cambridge Network mid banner
Advertisement: partnersand mid banner
Advertisement: Simpsons Creative
Mid banner advertisement: BDO
Advertisement: Mogrify mid banner
Advertisement: S-Tech mid banner 3
Advertisement: Wild Knight Vodka
Advertisement: Kao Data Centre mid banner
Advertisement: RSM mid banner
Barr Ellison Solicitors – commercial property
23 April, 2019 - 13:06 By Tony Quested

New eco-friendly refrigerant to be commercialised from Cambridge

With the global warming debate raging, a Cambridge UK researcher working with Spanish colleagues has identified an eco-friendly solid that could replace inefficient and polluting gases used in most refrigerators and air conditioners. 

Dr Xavier Moya is now working with Cambridge Enterprise – the university’s commercialisation arm – to bring the technology to market.

The researchers found that, when put under pressure, plastic crystals of neopentylglycol (NPG) yield huge cooling effects – sufficient to make them competitive with conventional liquid coolants. 

There are bonuses: The material is inexpensive, widely available and functions at close to room temperature. Details of the discovery have been published in the journal Nature Communications.

The gases currently used in the vast majority of refrigerators and air conditioners – hydrofluorocarbons and hydrocarbons (HFCs and HCs) – are toxic and flammable. When they leak into the air, they also contribute to global warming.

“Refrigerators and air conditioners based on HFCs and HCs are also relatively inefficient,” said Dr Moya who led the research with Professor Josep Lluís Tamarit from the Universitat Politècnica de Catalunya. 

“That’s important because refrigeration and air conditioning currently devour a fifth of the energy produced worldwide and demand for cooling is only going up,” he added.

To solve these problems, materials scientists around the world have sought alternative refrigerants that are solids. Dr Moya, a Royal Society Research Fellow in Cambridge’s Department of Materials Science and Metallurgy, is one of the leaders in the field.

In their newly-published research, Moya and collaborators from the Universitat Politècnica de Catalunya and the Universitat de Barcelona describe the enormous thermal changes under pressure achieved with plastic crystals.

Conventional cooling technologies rely on the thermal changes that occur when a compressed fluid expands. Most cooling devices work by compressing and expanding fluids such as HFCs and HCs. As the fluid expands again, its temperature drops, cooling its surroundings.

With solids, cooling is achieved by changing the material’s microscopic structure. This change can be achieved by applying a magnetic field, an electric field or a mechanical force. 

Despite decades of work, the caloric effects achievable on a variety of solids have fallen far short of the thermal changes available in fluids. The discovery of colossal barocaloric effects using a plastic crystal of neopentylglycol, and other related organic compounds, has levelled the playing field.

Due to the nature of their chemical bonds, organic materials are easier to compress. In addition, NPG is widely used in the synthesis of paints, polyesters, plasticisers and lubricants. It’s not only widely available, but also is inexpensive.

NPG’s molecules, composed of carbon, hydrogen and oxygen, are nearly spherical and interact with each other only weakly. These loose bonds in its microscopic structure permit the molecules to rotate relatively freely.

The word “plastic” in “plastic crystals” refers not to its chemical composition but rather to its malleability. Plastic crystals lie at the boundary between solids and liquids.

Compressing NPG yields unprecedentedly large thermal changes due to molecular reconfiguration. The temperature change achieved is comparable with those exploited commercially in HFCs and HCs.

The discovery of colossal barocaloric effects in a plastic crystal should bring barocaloric materials to the forefront of research and development to achieve safe environmentally friendly cooling without compromising performance.

Newsletter Subscription

Stay informed of the latest news and features